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The slow dynamics of a single particle in multicomponent glass-forming systems including fragile and
strong glasses is studied from a unified point of view. The simulation results on two different systems, bulk
glass-forming Cu60Ti20Zr20 melt and network-forming SiO2, melt are analyzed by the mean-field theory �MFT�
recently proposed and are compared with other systems near the glass transition. It is shown that the simulation
results for the mean-square displacement are all collapsed into a master curve given by MFT if a long-time
self-diffusion coefficient has the same value in each system. It is also shown that each long-time self-diffusion
coefficient is described well by a singular function predicted recently from first principles. Thus, we conclude
that there exists a simple universal mechanism near the glass transition even among any diversely different
glass-forming systems.
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I. INTRODUCTION

Understanding of the glass transition is one of the pio-
neering problems encountered in a wide variety of fields,
such as soft-matter science and chemical engineering, which
deal with complex systems �1–4�. With recent progress in
science and technology the relaxation processes of viscous
liquids near the glass transition are extensively studied by
experiments and computer simulations �5,6�. Several inter-
esting statistical-mechanical theories have been also pro-
posed to study this problem, for example, by Götze et al.
�4,7,8� and by Medina-Noyola and co-workers �9–11�. The
former work is based on a mode-coupling theory �MCT�,
while the latter is based on a generalized Langevin equation
description. Although their approaches are limited to a cal-
culation of two-body correlations, their results are quite suc-
cessful in some cases. However, it is well known that many-
body correlations play an important role near the glass
transition and cause a dynamic heterogeneity �12,13�. Hence,
those correlations are indispensable to discuss the slow re-
laxation in complex systems. In general, however, it is diffi-
cult to deal with them from first principles. In the present
paper, we focus only on the dynamics of a single particle.
Instead of calculating those correlations, therefore, we inves-
tigate how many-body correlations lead to universal proper-
ties in the dynamics of a single particle by just analyzing
available data for the mean-square displacement from a uni-
fied point of view based on the mean-field theory �MFT�
recently proposed �14,15�. We do not discuss the dynamics
of the non-Gaussian parameter here since precise data are not
available yet.

In this paper, we discuss whether there exists a universal-
ity near the glass transition among diversely different glass-
forming systems, including fragile glass formers and strong
glass formers. In the previous papers �15,16�, we have shown
that there exists a universality among fragile glass formers.
In the present paper, we analyze the simulation results on
two different systems, bulk glass-forming Cu60Ti20Zr20 melt
�17� and network-forming SiO2 melt �18�, from a unified
point of view based on MFT and compare them with the
previous results. Thus, we show that the dynamical proper-

ties of the relaxation processes in those systems are also
remarkably universal as in fragile systems. The first point is
that any dynamical states of the systems are uniquely deter-
mined by a long-time self-diffusion coefficient DS

L �or a uni-
versal parameter u�. The second is that any simulation results
for the mean-square displacements in different systems can
be described by a single master curve given by MFT at a
given value of u. Thus, we show that MFT can describe not
only the relaxation processes in fragile glass-forming sys-
tems but also those in strong glass-forming systems. This is
also predicted from a first-principles theory recently pro-
posed by the present author �19�.

We begin in Sec. II by reviewing the theories, which are
used in the present paper. In Sec. III we show the universal
behavior among different systems from a unified point of
view based on the MFT. We conclude in Sec. IV with a
summary.

II. THEORIES

We consider three-dimensional multicomponent glass-
forming systems, AxByCz¯, which consists of N� particles
with mass m� and diameter ��� in the total volume V at
temperature T, where �� �A ,B ,C , . . .�, N=��N�, and x+y
+z+ ¯ =100. Let Xi

����t� and Pi
����t� denote the position

vector of ith particle of component � and its momentum at
time t.

A. First-principles theory

We first review the first-principles theory recently pro-
posed by the present author �19�. The particle obeys the
Newton equation

d

dt
Pi

����t� = Fi
����t� , �1�

where Fi
����t� is a force acting on the ith particle of compo-

nent � from the other particles. Equation �1� holds on the
time scale of order tth�=��� /vth�, where vth�=�kBT /m��1/2� is
an average particle velocity.
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In this paper, we are only interested in the single-particle
dynamics near the glass transition, whose space-time scales
are much larger than those of microscopic processes. Then,
the useful physical quantities to describe the relaxation of a
single particle near the glass transition are given by the self-
intermediate scattering function

FS
����q,t� = �exp�iq · �Xi

����t� − Xi
����0���	 �2�

and the mean-square displacement

M2
����t� = �
Xi

����t� − Xi
����0�
2	 , �3�

both of which are related through the relation

FS
����q,t� � exp�−

q2

6
M2

����t� +
q4

2
M2

����t�
6

�2

�2
����t� + ¯� ,

�4�

where �2�t� is the non-Gaussian parameter �20�.
As shown in the previous paper �19�, using the

Tokuyama-Mori projection operator method �21�, one can
transform Eq. �1� into a time-convolutionless generalized
Langevin equation

d

dt
Pi

����t� = − �
0

t

�����s�ds Pi
����t� + fi

����t� �5�

with the memory function

�����t� =
�fi

����t� · fi
����0�	

�Pi
����t� · Pi

����0�	
, �6�

where fi
����t� denotes the fluctuating force and is given by

fi
����t� = Fi

����t� + �
0

t

�����s�ds Pi
����t� . �7�

Here, fi
����t� satisfies

�fi
����t� · Pi

����0�	 = �fi
����t�	 = 0. �8�

The use of Eqs. �5� and �8� then leads to

�Pi
����t� · Pi

����0�	 = exp�− �
0

t

ds�
0

s

d� ����������Pi
����2	 .

�9�

Equation �5� is a starting equation to discuss the dynamics of
a single particle.

By using Eqs. �3� and �5�, one can derive the equation for
the mean-square displacement M2

����t� as �19�

d

dt
M2

����t� = 6D����t� , �10�

where D����t� denotes the time-dependent self-diffusion co-
efficient and is given by

D����t� =
����v0�t/tM

1 + t�0
t �����s�ds

. �11�

Here, v0= �� /m��1/2 and tM = t0�v0 /vth�2, where � is an energy
and t0=��� /v0. Let t� denote a relaxation time of the
memory function �����t�. Then, one finds

M2
����t� � �3vth

2 t2 for t � t�

6DS
Lt for t 	 t�,

� �12�

with the long-time self-diffusion coefficient

DS
L = D����t = 
� =

���v0

tM�0

�����s�ds

. �13�

Thus, there are different time stages, depending on time
scales �14�. In an early stage �E� for t� tf, the particle obeys
a ballistic motion. In an intermediate stage �or � stage� ���
for tf � t� t�, it behaves as if it is trapped in a cage which is
mostly formed by neighboring particles. This is the so-called
cage effect. On the time scale of order t�, the particles can
escape their cages and in a late stage �L� for t	 t�; they obey
a long-time diffusion process with DS

L.

B. Long-time self-diffusion coefficient

In general, it is difficult to calculate the memory function
up to higher order in Fi. However, this is indispensable to
discuss the slow dynamics of a single particle near the glass
transition because the many-body correlations play an impor-
tant role near the glass transition. As shown in the previous
paper �22�, the long-time self-diffusion coefficient DS

L is writ-
ten as

DS
L���

���v0
= ��

−1�c
���

�
�1 −

�

�c
����2

, �14�

where � is a control parameter, such as an inverse tempera-
ture 1 /T and a volume fraction �, and �c

��� is a singular point
to be determined. The singular part of Eq. �14� results from
the long-time correlation effects due to the many-body inter-
actions between particles and is in general difficult to calcu-
late. Hence, the singular point �c is only determined by fit-
ting Eq. �14� with experimental data and simulation results.
As is discussed later, however, there exists a universal rule to
determine it.

On the other hand, the coefficient �� can be calculated
analytically. The use of Eqs. �13� and �14� then leads to

tM�
0




�����s�ds = �� �

�c
����1 −

�

�c
����−2

, �15�

As discussed in the previous paper �22�, the coefficient ��

can be calculated analytically at lower values of � for such
systems that �i� the intermolecular force is of long range
and/or �ii� the number density is nondiluted at lower � as

�� =
���

�
�−

�U��
rep�r�
�r

��
r=���

, �16�

where U��
rep�r� denotes a repulsive part of the potential

U���r�. For other systems in which the control parameter is
the volume fraction � and the intermolecular force is of short
range with a linear force range ���, an analytical prediction
of �� is as follows. At lower volume fractions, the two-body
repulsive interactions play an important role. In the follow-
ing, therefore, we only discuss those interactions. By using
Eqs. �6�, �7�, and �9�, one can then write �����t�, up to the
lowest order in Fi

���, as
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�����t� =
�Fi

����t� · Fi
����0�	

��Pi
����2	

+ O�Fi
4� , �17�

where ��Pi
����2	=3m�kBT. It is convenient to introduce the

number densities by

nS
����r� = �„r − Xi

����0�… , �18�

n����r� = �
i=1

N�

�„r − Xi
����0�… . �19�

Then, the force Fi
����0� can be written as

Fi
����0� = �

�
� dr1� dr2 F12

��nS
����r1�n����r2� , �20�

where Fij
�� denotes the force acting on the particle i of com-

ponent � from the particle j of component �. As shown in
the previous paper �22�, the force term Fij

�� is only needed to
determine �� at lower values of �. In the following, there-
fore, we neglect the forces acting on particle of component �
from particles of other components. It is convenient to intro-
duce the dimensionless variables as

r̂ = r/���, kBT/� = 1, n̂ = ���
3 n ,

F12
��ˆ = ����/��F12

��, P̂i
��� = Pi

���/�m�kBT�1/2. �21�

The average distance between particles is of order ��� /�1/3,
while the force range is of order ���. Hence, one can write

r̂2 = r̂1 + r̂21 � r̂1 + O��1/3� , �22�

n̂����r̂2� = n̂����r̂1� + r̂21 · �̂1n̂����r̂1� + O��2/3� , �23�

where r̂21= r̂2− r̂1. Thus, the memory integral can be written
as

tM�
0




���s�ds = tM

�Pi
����
� · Fi

����0�	
3m�kBT

�� dr̂21F̂12
��

�� dr̂1
�P̂i

����
�n̂S
����r̂1�r̂21 · �̂1n̂����r̂1�	

3

�24�

=�− �
1




dr̂21r̂21
3 �Û��

rep�r̂21�
� r̂21

�
��� dr̂1

4�

3
�n̂����r̂1�P̂i

����
� · �̂1n̂S
����r̂1�	� .

�25�

The second part of Eq. �25� is of order 1 and corresponds to
the singular part of Eq. �15�. Hence, we thus find

�� = �
1




dr̂ r̂3−
�Û��

rep�r̂�
� r̂

� . �26�

As a simple example, we take U���r�=kBT���� /r�n��. Then,
we obtain

�� =
n��

n�� − d
, �27�

where d=3 here. As n�� increases, �� decreases to 1. In
fact, for hard spheres where U���r� is given by the step func-
tion, we find ��=1.

In order to test Eq. �27�, we analyze the simulation results
from Refs. �23–27� for the long-time self-diffusion coeffi-
cient DS

L on the polydisperse systems of soft spheres and
quasihard spheres with �% size polydispersity, where the
potential is given by U�r�=kBT�� /r�n. For comparison, the
hard-sphere systems with �% size polydispersity are also
considered. In Fig. 1, DS

L /�v0 versus the volume fraction
��=��3N /6V� is plotted for different values of n. It is thus
shown that for soft spheres with n=8, �� is given by Eq.
�16�, while for quasihard spheres with n�36 it is given by
Eq. �27�. On the other hand, for such systems with 9�n
�36 that they are neither soft spheres nor hard spheres, ��

is only determined by fitting since there is no theory for it.
The coefficient �� and the singular volume fraction �c are
listed in Table I. In order to check the consistency with Eq.

FIG. 1. �Color online� A logarithmic plot of DS
L /�v0 versus �

for different n. The filled squares indicate the simulation results
from Ref. �23� and the filled circles indicate the MCT solutions
from Ref. �23� at n=36 and �=10%. The other symbols indicate the
simulation results: ��� n=36 ��=10%� and �� � n=36 �15%� from
Ref. �24�, �� � n=8, ��� n=12, ��� n=18, ��� n=36, and �+� n
=144 at �=0% from Ref. �25�, and �� � hard spheres at �=6%
from Ref. �27� and ��� hard spheres at �=15% from Ref. �26�. The
solid and the dashed lines indicate the mean-field singular function
given by Eq. �14�, where  and �c are listed in Table I.
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�14� more clearly, we also show a log-log plot of DS
L /�v0

versus ��c /���1−� /�c�2 in Fig. 2. Thus, all the simulation
results are shown to be well described by Eq. �14� within
errors. Finally, we note here that the simulation results on the
polydisperse system with �=10 and the corresponding solu-
tions of the MCT �23� are also well described by Eq. �14�. In
both cases �� has the same value as 36 /33��1.091�, while
the singular point �c is different from each other because the
only two-body correlations are taken into account for MCT
but the many-body correlations are done for the simulations.
Finally, we note that the simulation results deviate from the
mean-field line given by Eq. �14� at higher volume fractions.
As is discussed later, this deviation always occurs around the
same value of DS

L /���v0 even in different systems.

C. Mean-field theory

Here, we briefly summarize the MFT of the glass transi-
tion for molecular systems recently proposed by the present

author �14,15,28�. The mean-field theory consists of two es-
sential points: �i� the mean-field equations for the mean-
square displacement and �ii� the singular long-time self-
diffusion coefficients.

Mean-field equations

The mean-square displacement M2
����t� for molecular sys-

tems is described by a nonlinear equation �14�

d

dt
M2

����t� = 6DS
L��� + 6�v0

2t − DS
L����e−M2

����t�/����2
, �28�

where the mean-free path ���� is a length in which a particle
can move freely without any interactions between particles.
Although it is originally related to the static structure factor
S�q� �28�, it is determined by a fitting with data here. Equa-
tion �28� can be solve to give a formal solution

M2
����t� = 2dDS

Lt + �2 ln�e−2dt/t� +
1

6
 t�

tf
�2

��1 − 1 +
2dt

t�
�e−2dt/t��� , �29�

where t��=�2 /DS
L� denotes a time for a particle to diffuse

over a distance of order � with the diffusion coefficient DS
L

and is identical to the so-called �-relaxation time. Here, tf�
=� /v0� is a mean-free time, within which each particle can
move freely without any interactions between particles. As
shown in the previous paper �15�, the mean-free path � is
uniquely determined by DS

L / ����v0�. Hence, solution �29�
suggests that the dynamics is described by only one param-
eter DS

L / ����v0� if the length and the time are scaled by ���

and t0, respectively.
Solution �29� also shows the asymptotic forms given by

Eq. �12�. As shown in the previous paper �14�, for ���s
there exists a new time stage, the so-called �-relaxation stage
��� for tf � t� t�, where �s is a value at which a new time
appears. In fact, one can find one more time scale, the caging
time t�, as follows. First, one can obtain the following
asymptotic solutions from Eq. �29�:

TABLE I. �� and �c.

Method n �� �c

�
�%� Ref.

MD 8 8 �Eq. �16�� 1.245 0 �25�
MD 12 4 �fitting� 0.822 0 �25�
MD 18 3 �fitting� 0.6885 0 �25�
MD 144 144/141 �Eq. �22�� 0.5598 0 �25�
MD 36 36/33 �Eq. �22�� 0.593 10 �24�
MD 36 36/33 �Eq. �22�� 0.593 15 �24�
MD 36 36/33 �Eq. �22�� 0.593 10 �23�
MCT 36 36/33 �Eq. �22�� 0.5136 10 �23�
MD 
 1 �Eq. �22�� 0.583 6 �27�
MD 
 1 �Eq. �22�� 0.5908 15 �26�

FIG. 2. �Color online� A log-log plot of DS
L /�v0 versus

��c /���1−� /�c�2 for different n. The details are the same as in
Fig. 1.
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M2�t� � ��2 ln�1 + �t/tf�2� for t � tf

6DS
Lt for t � tL,

� �30�

where tL�=���
2 /DS

L� is a long-diffusion time. We now intro-
duce the logarithmic derivatives by

�1�t,�� =
�

� log t
log
M2�t� − �2 ln�1 + �t/tf�2�
 , �31�

�2�t,�� =
�

� log t
�1�t� . �32�

Then, �2�t�=0 gives two time roots, t� and t�, which reveal
two fairly flat regions for ���s �14�:

�1�t� = �b� for t = t�

b� for t = t�,
� �33�

where b�=b� and t�= t� at �=�s, and b��b� and t�� t� for
���s. On a time scale of order t�, each particle behaves as
if it is trapped in a cage, which is mostly formed by neigh-
boring particles. This is the so-called cage effect. Hence, the
� stage is separated into two stages: a fast � stage �� f� for
tf � t� t� and a slow � stage ��s� for t�� t� tL. On a time
scale of order t�, the particles can escape their cages, and on
a time scale of order tL they finally obey a long-time diffu-
sion process. By expanding M2

����t� in powers of ln�t / t�� or
ln�t / t�� on each stage, one can then find the following
asymptotic forms:

M2
����t� � ��2�ln�1 +  t�

tf
�2� + 2 ln t

t�
� + B� t

t�
�b�� for �� f� ,

�2�ln�1 +  t�

tf
�2� + B� t

t�
�b�� for ��s� ,� �34�

where B� is a positive constant and b� and b� are time ex-
ponents to be determined. We mention here that in stage �� f�
the logarithmic growth dominates the dynamics for all sys-
tems since B��1, while in stage ��s� the power-law growth
dominates the dynamics. As � increases, both exponents b�

and b� decrease and become constant as b�=1.0 and b�

=1.3301. We should note here that, since b��1, the power-
law behavior in stage ��s� is superdiffusion type and is dif-
ferent from that of von Schweidler type.

The single-particle dynamics is determined by only one
parameter DS

L / ����v0�. Hence, it is convenient to introduce a
parameter u by

u = log10����v0/DS
L� . �35�

As shown in the previous paper �15�, as � is increased, the
supercooled state and the glassy state appear at �� �u�� and
�g �ug�, respectively, where �g�����s �ug�u��us�.
Analyses of various data show that u��2.6, ug�5.1, and
us�1.06 �Table II�. As � increases, the time exponents b�

and b� decrease. In the supercooled region �S� for u��u
�ug, the exponent b� reduces to 1.3301, while the exponent
b� reduces to 1 in the glass region �G� for u�ug. We should
also mention here from the detailed analyses that, as u in-
creases, the long-time self-diffusion coefficients obtained by
the simulations and the experiments start to deviate from Eq.
�14� at u=ux��3.04�, while their mean-square displacements
also show a deviation from Eq. �29� for u�ux but only in the
� stage. This concurrence may not be a coincidence because
the systems are considered not to be in equilibrium for u
�ux.

III. UNIVERSALITIES NEAR THE GLASS TRANSITION

In this section, we analyze the mean-square displacements
obtained in two different systems, Cu60Ti20Zr20 and SiO2,
from a unified point of view based on MFT and explore
universal behavior near the glass transition. Both systems
satisfy the conditions that �i� the intermolecular force is of
long range and/or �ii� the number density is nondiluted at
lower �. Hence, �� is calculated from Eq. �16�.

TABLE II. Universal parameter u.

us u� ux ug

1.06 2.60 3.04 5.10

TABLE III. SW potential parameters for Cu60Ti20Zr20 from Ref.
�30�.

�
�eV� c��

���

�Å� R��
c n��

Cu-Cu 0.485 1 2.275 1.681 9

Cu-Ti 3.49484 2.300 1.794 7

Ti-Ti 3.27423 2.350 2.056 4

Cu-Zr 4.00619 2.496 1.792 8

Ti-Zr 5.61237 2.481 1.968 3

Zr-Zr 7.53608 2.646 1.855 3
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A. Cu60Ti20Zr20

First, we analyze the simulation results for self-diffusion
of Cu in Cu60Ti20Zr20 melt �17�, where �=1 /T. The

molecular-dynamics �MD� simulations are performed at
mCu=mTi=mZr by the so-called NPT method by using the
following Stillinger-Weber potential �SW� �29�:

U���r� = �c�������

r
�n��

− 1�exp� r

���

− R��
c �−1� for r � R��

c ���

0 for r � R��
c ���,

� �36�

where the potential parameters are listed in Table III. Here,
the total number of particles is N=4000. The simulation is
done at 1 atm. Length, time, and temperature are scaled by
�CuCu, �CuCu�mCu /��1/2, and � /kB, respectively.

In Fig. 3, the mean-square displacement M2�t� for Cu is
plotted versus time t / t0 for different temperatures. The mean-
field equation given by Eq. �29� agrees with the simulation
results well, except for lower temperatures T�Tx. Here, two
adjustable parameters � and DS

L are used to fit Eq. �29� with
the simulation results. For T�Tx �or u�ux�, the simulation
results deviate upward from the theoretical results only in �
stage. Hence, those simulation results are considered not to
reach an equilibrium state yet. As mentioned before, such a
deviation always occurs at u�ux. In Fig. 4, the long-time
self-diffusion coefficient DS

L is plotted versus inverse tem-
perature. From Eq. �16�, the coefficient CuCu is calculated as
CuCu=9 �22�. The inverse singular temperature is obtained
by fitting Eq. �14� with the simulation results as 1 /Tc

�5.92. Thus, Eq. �14� can describe the simulation results
well, except for lower temperatures T�Tx �or u�ux�. We
note here that those simulation results also show a deviation
from Eq. �14� for u�ux. Hence, the simulation results do not
reach an equilibrium state yet for u�ux. The characteristic
temperatures are listed in Table IV.

B. SiO2

Next, we analyze the simulation results for self-diffusion
of O in SiO2 melt �18�, where �=1 /T. The molecular-
dynamics simulations are performed by the so-called NVT
method by using the following potential given by Nakano et
al. �31�:

U = �
���

U��
�2� + �

�,���

U���
�3� �37�

with the two-body potential

U��
�2��r� = �a�� + a��

r
�n��

+
Z�Z�

r
e−r/A0 −

a�Z�
2 + a�Z�

2

2r4 e−r/A1

�38�

and the three-body potential

U���
�3� = B� exp� 1

r�� − A2
+

1

r�� − A2
� r�� · r��

r��r��

− cos �̄��2

��A2 − r�����A2 − r��� , �39�

where ��x� is a step function, A0=4.43 �Å�, A1=2.5 �Å�,
and A2=5.5 �Å�. The potential parameters are listed in Table
V. Here, the total number of particles is N=5184 and the
system size is 42.8 Å. Length, time, and temperature are
scaled by �OO�=2aOO�, �OO /v0, and � /kB, respectively,
where mO=2.66�10−26 �kg� and �OOv0=7.52
�10−7 �m2 /s�.

TABLE IV. Characteristic temperatures for Cu.

Ts T� Tx Tc Tg

0.399 0.196 0.185 0.169 0.146

2247 �K� 1104 �K� 1042 �K� 952 �K� 822 �K�

FIG. 3. �Color online� A log-log plot of M2
�Cu��t� versus time t / t0

for different temperatures, T=0.315, 0.3, 0.27, 0.23, 0.2, 0.182,
0.167, 0.154, and 0.143 �from left to right�. The filled circles indi-
cate the simulation results for Cu from Ref. �17�. The solid lines
indicate the mean-field master curve given by Eq. �29�.

MICHIO TOKUYAMA PHYSICAL REVIEW E 80, 031503 �2009�

031503-6



In Fig. 5, the mean-square displacement M2�t� for O is
plotted versus time t / t0 for different temperatures. The mean-
field equation agrees with the simulation results well, except
for lower temperatures T�Tx �or u�ux�. In Fig. 6, the long-
time self-diffusion coefficient DS

L is plotted versus inverse
temperature. From Eq. �16�, the coefficient OO is calculated
as OO=15.31 �22�. The inverse singular temperature is ob-
tained by fitting Eq. �14� with the simulation results as
1 /Tc�6.0. Thus, Eq. �14� can describe the simulation results
well, except for lower temperatures T�Tx �or u�ux�. This
situation is the same as that discussed in Cu. The character-
istic temperatures are listed in Table VI.

In order to show whether Eq. �14� holds for the other
network glass formers, we analyze the data given by Hem-
mati and Angell for different model potentials of SiO2 �32�.
As shown in the previous paper �22�, the coefficient OO
should be the same as that obtained by using Eq. �37�, even
though the model potentials are different. Hence, we take
OO=15.31 and �OOv0=7.52�10−7 �m2 /s� to analyze seven
different data discussed in Ref. �32�. In Fig. 7, we show a

logarithmic plot of the oxygen self-diffusion coefficient
DS

L�O� versus the reduced temperature Tc /T. The inverse sin-
gular temperatures are obtained by fitting Eq. �14� with the
simulation results and are listed in Table VII. For compari-
son, the simulation results obtained by using Eq. �37� are
also shown in Fig. 7. In Fig. 8, a log-log plot of DS

L�O� versus
�T /Tc��1−Tc /T�2 is also shown to check consistency with
Eq. �14�. All simulation results obtained by using different
potentials are well described by a single master curve given
by Eq. �14� up to ux. This is reasonable because most of
those potentials have been made, so that their static structure
factors describe realistic structural properties of SiO2. Here,
we note that the potential difference appears only in the sin-
gular temperature.

C. Exponents b� and b�

We now discuss the exponents b� and b� obtained for
Cu60Ti20Zr20 and SiO2. They are calculated numerically from
Eqs. �31� and �32� by using fitting values of � and DS

L. In Fig.

TABLE V. Potential parameters for SiO2.

�
�eV�

a��

�Å� Z� �e�
a�

�Å3� n��

B�

�eV� �̄�

O-O 1.592 1.2 1.76 2.4 7

Si-Si 1.592 0.47 −0.88 0.00 11

O-Si 1.592 9

O-Si-O 4.993 109.47

Si-O-Si 19.972 141.00

FIG. 4. �Color online� A logarithmic plot of DS
L�Cu� versus 1 /T.

The filled circles indicate the simulation results from Ref. �17�. The
solid lines indicate the mean-field singular function given by Eq.
�14�, where CuCu=9 and 1 /Tc=5.92. A log-log plot of DS

L�Cu� ver-
sus �T /Tc��1−Tc /T�2 is given in the inset, where the dotted line
indicates −ux.

FIG. 5. �Color online� A log-log plot of M2
�O��t� versus time t / t0

for different temperatures, T=0.2706, 0.2273, 0.2057, 0.1813,
0.1678, 0.1516, 0.1407, and 0.1353 �from left to right�. The filled
circles indicate the simulation results for O from Ref. �18�. The
solid lines indicate the mean-field master curve given by Eq. �29�.
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9, they are plotted versus u. As typical examples of fragile
systems, the simulation results for the hard-sphere fluids with
15% size polydispersity �26� and 6% size polydispersity �27�
and the Lennard-Jones �LJ� binary mixtures �33� are also
plotted for comparison. As u increases, b� and b� decrease
and reduce to each the constant 1.3301 at a supercooled point
u� and 1.0 at a glass point ug, respectively. Although the
systems are completely different from each other, all their
exponents coincide with each other within error. This univer-
sality is already seen in fragile systems �15�.

D. Mean-free path �

We next discuss the mean-free path � obtained for
Cu60Ti20Zr20 and SiO2. In Fig. 10, it is plotted versus u for
different systems. For comparison, the simulation results for
the hard-sphere fluids and the Lennard-Jones binary mixtures
are also shown. The lengths � of O and Cu do not agree with
other fragile systems. But if one scales � of O and Cu by
1.8�OO and 1.5�CuCu, respectively, then they agree with oth-
ers. Those scaled fittings are needed because ��� is not a
diameter of O or Cu but just a technical number to make the
length scale dimensionless. We note that � of Cu does not
agree with others in a liquid state. This would be because the

simulations on Cu have been done by the NPT method,
while the other simulations have been done by the NVT
method.

E. Characteristic times t� and t�

We also discuss the characteristic times t� and t� obtained
for Cu60Ti20Zr20 and SiO2. In Fig. 11, they are plotted versus
u. For comparison, the simulation results for the hard-sphere
fluids and the Lennard-Jones binary mixtures are also shown.
The u dependence of those times are similar to each other,
where the results for O and Cu are also scaled by the times
1.8�OO /v0 and 1.5�CuCu /v0, respectively, as in Fig. 10.

F. Mapping

In this section, we discuss a dynamical mapping from one
system to another at a given value of DS

L �16�. We consider

TABLE VI. Characteristic temperatures for O.

Ts T� Tx Tc Tg

0.500 0.203 0.188 0.167 0.136

9242 �K� 3752 �K� 3475 �K� 3087 �K� 2514 �K�

TABLE VII. Singular temperatures for different models.

Model
1000 /T
�K−1� Symbol Ref.

Modified-Matsui 0.350 � �32�
Tsuneyuki 0.305 � �32�
BKS 0.285 � �32�
Horbach �BKS� 0.267 � �32�
Poole 0.200 � �32�
TRIM 0.1976 � �32�
Kubicki 0.1905 + �32�
Nakano 0.324 � �31�

FIG. 6. �Color online� A logarithmic plot of DS
L�O� versus 1 /T.

The filled circles indicate the simulation results from Ref. �18�. The
solid lines indicate the mean-field singular function given by Eq.
�14�, where OO=15.31 and 1 /Tc=6.0. A log-log plot of DS

L�O� ver-
sus �T /Tc��1−Tc /T�2 is given in the inset, where the dotted line
indicates −ux.

FIG. 7. �Color online� A logarithmic plot of DS
L�O� versus Tc /T

for different models of SiO2. The symbols indicate the simulation
results from Ref. �32�, except that with the symbol �� � is from
�18�. The solid lines indicate the mean-field singular function given
by Eq. �14�, where OO=15.31 and �OOv0=7.52�10−7 �m2 /s�.
The singular temperatures are listed in Table VII.
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the following three cases. The first is a mapping from Cu to
the hard-sphere fluid with 6% size polydispersity �HSF6%�.
In Fig. 12, the mean-square displacement M2�t� is compared
at two different values of DS

L; in a liquid state �L� at

DS
L / ��v0��0.05, where �=0.45 for the hard-sphere fluid

and T=0.27 for Cu, and in a supercooled liquid state �S� at
DS

L / ��v0��0.0017, where �=0.56 and T=0.182. At each
value the simulation results are collapsed on the mean-field
master curve. Here, we note that in a supercooled state the
simulation results for Cu deviate from the mean-field theory
because they do not reach an equilibrium state yet.

FIG. 8. �Color online� A log-log plot of DS
L�O� versus �T /Tc��1

−Tc /T�2. The dashed line indicates −ux. The details are the same as
in Fig. 7.

FIG. 9. �Color online� A plot of b� and b� versus u for different
systems. The open symbols indicate the exponent b� and the filled
symbols indicate b�; ��� Cu, ��� O, ��� hard-sphere fluids with 15
% size polydispersity from Ref. �26�, ��� hard-sphere fluids with 6
% size polydispersity from Ref. �27�, and ��� LJ from Ref. �33�.
The horizontal dotted line indicates b�=1.0 and the horizontal
dashed line indicates b�=1.33014. The vertical dotted line indicates
u� and the vertical dashed line indicates ug.

FIG. 10. �Color online� A plot of � /� versus u for different
systems. The open squares and circles indicate the original results
for O and Cu, respectively, and the filled squares and circles the
scaled ones. The details are the same as in Fig. 9.

FIG. 11. �Color online� A plot of t� and t� versus u for different
systems. The open symbols indicate the time t� and the filled sym-
bols indicate t�. The details are the same as in Fig. 9.
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The second is a mapping from O to the hard-sphere fluid
with 15% size polydispersity �HSF15%�. In Fig. 13, the
mean-square displacement M2�t� is compared at two differ-
ent values of DS

L: in a liquid state �L� at DS
L / ��v0��0.0053,

where �=0.55 for the hard-sphere fluid and T=0.2273 for O,
and in a supercooled liquid state �S� at DS

L / ��v0��0.00036,
where �=0.58 and T=0.1678. At the same value of DS

L, the
simulation results are collapsed on the corresponding mean-
field master curves given by Eq. �29�.

The last is a mapping from O and Cu to the LJ binary
mixtures. In Fig. 14, the mean-square displacement M2�t� is
compared at two different values of DS

L: in a liquid state �L�
at DS

L / ��v0��0.01, where T=1.0 for LJ and T=0.23 for Cu,
and in a supercooled liquid state �S� at DS

L / ��v0��0.002,
where T=0.769 for LJ and T=0.2165 for O. At the same
value of DS

L all the simulation results on fragile and strong
glass formers are collapsed on the mean-field master curve
given by Eq. �29�. Hence, the dynamical behavior in differ-
ent systems is identical to each other if DS

L is the same. This
universality is also true even for stronger glass formers, al-
though this was discussed only in fragile glass formers in the
previous paper �16�.

G. Long-time self-diffusion coefficient

Finally, we discuss the universality among the long-time
self-diffusion coefficients for diversely different glass-
forming systems. In Fig. 15, DS

L is plotted versus � /�c for
different systems. All simulation results are described by the
master curve given by Eq. �14� well, except for higher values

FIG. 12. �Color online� A log-log plot of M2�t� /�2 versus t / t0

for two different systems: HSF6% and Cu60Ti20Zr20. The filled
circles indicate the simulation results for hard spheres with 6% size
polydispersity at �L� �=0.45 and �S� 0.56 from Ref. �27� and the
open squares for Cu at �L� T=0.27 and �S� 0.182 from Ref. �17�.
The solid lines indicate the mean-field master curve given by Eq.
�29�.

FIG. 13. �Color online� A log-log plot of M2�t� /�2 versus t / t0

for two different systems: HSF15% and SiO2. The filled circles
indicate the simulation results for hard spheres with 15% size poly-
dispersity at �L� �=0.55 and �S� 0.58 from Ref. �26� and the open
squares for O at �L� T=0.2273 and �S� 0.1678 from Ref. �18�. The
solid lines indicate the mean-field master curve given by Eq. �29�.

FIG. 14. �Color online� A log-log plot of M2�t� /�2 versus t / t0

for three different systems: LJ, Cu60Ti20Zr20, and SiO2. The filled
circles indicate the simulation results for LJ at �L� T=1.0 and �S�
0.769 from Ref. �33�, the open circles for Cu at �L� T=0.23 from
Ref. �17�, and the open squares for O at �S� T=0.2165 from Ref.
�18�. The solid lines indicate the mean-field master curve given by
Eq. �29�.
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� /�x�1 �or u�ux�, where the systems do not reach an equi-
librium state yet. In order to check consistency with Eq. �14�
more clearly, we also show a log-log plot of DS

L /�v0 versus
��c /���1−� /�c�2 in Fig. 16. Thus, all the simulation results
are shown to be described by Eq. �14� well up to �x over
which the deviation from Eq. �14� starts to occur. Hence, this
suggests that the � /�c dependence of DS

L in any systems
should be the same for � /�x�1 �22�. This is clearly seen in
Fig. 17, where DS

L is plotted versus � /�c for different sys-
tems. When � /�x�1 �or u�ux�, DS

L obeys a nonsingular
function and its value is larger for stronger glasses. For
� /�c�1, however, the systems are usually out of equilib-
rium. In order to calculate such a nonsingular function, there-
fore, one has to discuss the nonequilibrium relaxation pro-
cesses separately from the equilibrium formulation discussed
here.

IV. SUMMARY

In this paper, we have analyzed two different glass-
forming systems, bulk glass-forming Cu60Ti20Zr20 melt and
network-forming SiO2 melt, from a unified viewpoint based
on the mean-field theory. We have first shown that the both
simulation results for the mean-square displacement M2�t�
are well described by the mean-field master curve given by
Eq. �29�, except for lower temperatures T�Tx �or u�ux�
where the system does not reach an equilibrium state yet. We
have then shown that if the long-time self-diffusion coeffi-
cient in different systems has the same value, those results

are collapsed into a master curve given by Eq. �29�. Second,
we have shown that the simulation results for the long-time
self-diffusion coefficient DS

L obey a mean-field singular curve
given by Eq. �14� well, except for lower temperatures T
�Tx �or u�ux�. These situations are exactly the same as
those discussed in fragile systems �15,16�. In fact, we have

FIG. 15. �Color online� A logarithmic plot of DS
L /�v0 versus

� /�c for different systems. The solid line indicates the mean-field
master curve given by Eq. �14� at CuCu=9.0, the dotted line at
OO=15.31, the dashed line at =1 for hard spheres, and the long-
dashed line at =48 for LJ. The horizontal solid lines indicate u�

and ug, while the horizontal dashed line indicates −ux. �L� stands for
a liquid state 0�u�u�, �S� for a supercooled state u��u�ug, and
�G� for a glass state ug�u. The details are the same as in Fig. 9.

FIG. 16. �Color online� A log-log plot of DS
L /�v0 versus

��c /���1−� /�c�2 for different systems. The details are the same as
in Fig. 15. Here, the data points for � /�c�1 are excluded for a
simplicity.

FIG. 17. �Color online� A logarithmic plot of �DS
L / ��v0� ver-

sus � /�c for different systems. The solid line indicates the mean-
field master curve given by Eq. �14� at =1. The details are the
same as in Fig. 9.
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compared the results with those obtained in fragile systems,
such as hard-sphere fluids. Thus, we conclude that there ex-
ists a simple universal mechanism near the glass transition
even among any diversely different glass-forming systems.
Finally, we should mention that the mean-field theory holds
only in an equilibrium state for ���x �or u�ux�. For �
��x �or u�ux�, however, the dynamic �spatial� heterogene-
ity becomes more important. Hence, one has to formulate a
new theory to discuss such a region. This will be discussed
elsewhere.
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